
ITDB02_Graph16 - Arduino library support for ITDB02 LCD Board
Copyright (C)2011 Henning Karlsen. All right reserved

Basic functionality of this library are based on the demo-code provided by ITead studio. You can
find the latest version of the library at http://www.henningkarlsen.com/electronics

This library has been made especially for the 3.2" TFT LCD Screen Module: ITDB02-3.2 by ITead
studio. This library has been designed to use 16bit mode, and it should work with the 2.4" Module
in 16bit mode as well, although I do not have one, so this is untested.

If you make any modifications or improvements to the code, I would appreciate that you share the
code with me so that I might include it in the next release. I can be contacted through
http://www.henningkarlsen.com/electronics/contact.php

This library is free software; you can redistribute it and/or modify it under the terms of the
GNU Lesser General Public License as published by the Free Software Foundation; either version
2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this library;
if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
02110-1301 USA

Version: 2.0 Aug 15 2010 • initial release
 2.1 Sep 30 2010 • Added Arduino Mega compatibility

• Fixed a bug with CENTER and RIGHT in
LANDSCAPE mode

• Fixed a bug in printNumI and printNumF when
the number to be printed was 0

 2.2 Oct 14 2010 • Added support for ITDB02-3.2WC
• Added drawBitmap() with its associated tool

 2.3 Nov 24 2010 • Added Arduino Mega2560 compatibility
• Added support for rotating text and

bitmaps.
 2.4 Jan 18 2011 • Fixed an error in the requirements
 2.5 Jan 30 2011 • Added loadBitmap()

• Optimized drawBitmap() when not using
rotation

 2.6 Mar 4 2011 • Fixed a bug in printNumF when the number to
be printed was (-)0.something

 3.0 Mar 19 2011 • General optimization
 3.01 Mar 20 2011 • Reduced memory footprint slightly
 4.0 Mar 27 2011 • Remade the font-system to make it more

flexible
 4.1 Apr 19 2011 • Remade the tinyFAT integration. Moved

loadBitmap() to the ITDB02_tinyFAT library

(*) Initial release is v2.0 to keep it in sync with the 8bit library.

IMPORTANT:
If you are upgrading from a version below v4.0 you have to delete the old library before
unpacking v4.0+

INTEGRATION WITH tinyFAT:
tinyFAT integration has been moved to a separate library. Please use the ITDB02_tinyFAT16 library
to enable integration.

 Page 1 of 6

 Page 2 of 6

DISPLAY ORIENTATION:

Requirements:
The library require the following connections:

Signal ITDB02 pin Arduino pin* Arduino Mega pin
DB0 21 D8 D37
DB1 22 D9 D36
DB2 23 D10 D35
DB3 24 D11 D34
DB4 25 D12 D33
DB5 26 D13 D32
DB6 27 A0 (D14) D31
DB7 28 A1 (D15) D30
DB8 7 D0 D22
DB9 8 D1 D23
DB10 9 D2 D24
DB11 10 D3 D25
DB12 11 D4 D26
DB13 12 D5 D27
DB14 13 D6 D28
DB15 14 D7 D29

ITDB02 pinout

* All boards with pinout like the Arduino Duemilanove / Arduino UNO

Defined Literals:

Alignment

For use with print(), printNumI() and printNumF()

LEFT:
RIGHT:

CENTER:

 0
9999
9998

Orientation

For use with InitLCD()

PORTRAIT:
LANDSCAPE:

 0
1

Aspect Ratio

For use with ITDB02()

ASPECT_4x3:
ASPECT_16x9:

 0
1

Included Fonts:

SmallFont

Charactersize:

Number of characters:
 8x12 pixels
95

BigFont

Charactersize:

Number of characters:
 16x16 pixels
95

SevenSegNumFont

Charactersize:

Number of characters:
 32x50 pixels
10

 Page 3 of 6

Functions:

ITDB02(RS, WR, CS, RST[, Aspect]);

The main class of the interface.

Parameters: RS: Arduino pin for Register Select

WR: Arduino pin for Write
CS: Arduino pin for Chip Select
RST: Arduino pin for Reset
Aspect: <optional>
 ASPECT_4x3 for ITDB02-2.4 and ITDB02-3.2 (both 240x320 pixels) (default)
 ASPECT_16x9 for ITDB02-3.2WC (240x400 pixels)

Usage: ITDB02 myGLCD(19,18,17,16); // Start an instance of the ITDB02 class

InitLCD([orientation]);

Initialize the LCD and set display orientation.

Parameters: Orientation: <optional>
 PORTRAIT (default)
 LANDSCAPE

Usage: myGLCD.initLCD(); // Initialize the display
Notes: This will reset color to white with black background. Font size will be reset to FONT_SMALL.

clrScr();

Clear the screen. The background-color will be set to black.

Parameters: None
Usage: myGLCD.clrScr(); // Clear the screen

fillScr(r, g, b);

Fill the screen with a specified color.

Parameters: r: Red component of an RGB value (0-255)

g: Green component of an RGB value (0-255)
b: Blue component of an RGB value (0-255)

Usage: myGLCD.fillScr(255,127,0); // Fill the screen with orange

setColor(r, g, b);

Set the color to use for all draw*, fill* and print commands.

Parameters: r: Red component of an RGB value (0-255)

g: Green component of an RGB value (0-255)
b: Blue component of an RGB value (0-255)

Usage: myGLCD.setColor(0,255,255); // Set the color to cyan

setBackColor(r, g, b);

Set the background color to use for all print commands.

Parameters: r: Red component of an RGB value (0-255)

g: Green component of an RGB value (0-255)
b: Blue component of an RGB value (0-255)

Usage: myGLCD.setBackColor(255,255,255); // Set the background color to white

drawPixel(x, y);

Draw a single pixel.

Parameters: x: x-coordinate of the pixel (0-239)

y: y-coordinate of the pixel (0-319)
Usage: myGLCD.drawPixel(119,159); // Draw a single pixel at the center of the screen

drawLine(x1, y1, x2, y2);

Draw a line between two points.

Parameters: x1: x-coordinate of the start-point (0-239)

y1: y-coordinate of the start-point (0-319)
x2: x-coordinate of the end-point (0-239)
y2: y-coordinate of the end-point (0-319)

Usage: myGLCD.drawLine(0,0,239,319); // Draw a line from the upper left to the lower right corner

 Page 4 of 6

drawRect(x1, y1, x2, y2);

Draw a rectangle between two points.

Parameters: x1: x-coordinate of the start-corner (0-239)

y1: y-coordinate of the start-corner (0-319)
x2: x-coordinate of the end-corner (0-239)
y2: y-coordinate of the end-corner (0-319)

Usage: myGLCD.drawRect(119,159,239,319); // Draw a rectangle in the lower right corner of the screen

drawRoundRect(x1, y1, x2, y2);

Draw a rectangle with slightly rounded corners between two points. The minimum size is 5 pixels in both directions. If a smaller size
is requested the rectangle will not be drawn.

Parameters: x1: x-coordinate of the start-corner (0-239)

y1: y-coordinate of the start-corner (0-319)
x2: x-coordinate of the end-corner (0-239)
y2: y-coordinate of the end-corner (0-319)

Usage: myGLCD.drawRoundRect(0,0,119,159); // Draw a rounded rectangle in the upper left corner of the screen

fillRect(x1, y1, x2, y2);

Draw a filled rectangle between two points.

Parameters: x1: x-coordinate of the start-corner (0-239)

y1: y-coordinate of the start-corner (0-319)
x2: x-coordinate of the end-corner (0-239)
y2: y-coordinate of the end-corner (0-319)

Usage: myGLCD.fillRect(119,0,239,159); // Draw a filled rectangle in the upper right corner of the screen

fillRoundRect(x1, y1, x2, y2);

Draw a filled rectangle with slightly rounded corners between two points. The minimum size is 5 pixels in both directions. If a
smaller size is requested the rectangle will not be drawn.

Parameters: x1: x-coordinate of the start-corner (0-239)

y1: y-coordinate of the start-corner (0-319)
x2: x-coordinate of the end-corner (0-239)
y2: y-coordinate of the end-corner (0-319)

Usage: myGLCD.fillRoundRect(0,159,119,319); // Draw a filled, rounded rectangle in the lower left corner of the
screen

drawCircle(x, y, radius);

Draw a circle with a specified radius.

Parameters: x: x-coordinate of the center of the circle (0-239)

y: y-coordinate of the center of the circle (0-319)
radius: radius of the circle in pixels

Usage: myGLCD.drawCircle(119,159,20); // Draw a circle in the middle of the screen with a radius of 20 pixels

fillCircle(x, y, radius);

Draw a filled circle with a specified radius.

Parameters: x: x-coordinate of the center of the circle (0-239)

y: y-coordinate of the center of the circle (0-319)
radius: radius of the circle in pixels

Usage: myGLCD.fillCircle(119,159,10); // Draw a filled circle in the middle of the screen with a radius of 10
pixels

print(st, x, y[, deg]);

Print a string at the specified coordinates. An optional background color can be specified. Default background is black.
You can use the literals LEFT, CENTER and RIGHT as the x-coordinate to align the string on the screen.

Changed in v2.3
Parameters: st: the string to print

x: x-coordinate of the upper, left corner of the first character (0-239)
y: y-coordinate of the upper, left corner of the first character (0-319)
deg: <optional>
 Degrees to rotate text (0-359). Text will be rotated around the upper left corner.

Usage: myGLCD.print(“Hello, World!”,CENTER,0); // Print “Hello, World!” centered at the top of the screen
Notes: CENTER and RIGHT will not calculate the coordinates correctly when rotating text.

 Page 5 of 6

 Page 6 of 6

printNumI(num, x, y);

Print an integer number at the specified coordinates. An optional background color can be specified. Default background is black.
You can use the literals LEFT, CENTER and RIGHT as the x-coordinate to align the string on the screen.

Parameters: num: the value to print (-2,147,483,648 to 2,147,483,647) INTEGERS ONLY

x: x-coordinate of the upper, left corner of the first digit/sign (0-239)
y: y-coordinate of the upper, left corner of the first digit/sign (0-319)

Usage: myGLCD.print(num,CENTER,0); // Print the value of “num” centered at the top of the screen

printNumF(num, dec, x, y);

Print a floating-point number at the specified coordinates. An optional background color can be specified. Default background is
black.
You can use the literals LEFT, CENTER and RIGHT as the x-coordinate to align the string on the screen.
WARNING: Floating point numbers are not exact, and may yield strange results when compared. Use at your own discretion.

Parameters: num: the value to print (See note)

dec: digits in the fractional part (1-5) 0 is not supported. Use printNumI() instead.
x: x-coordinate of the upper, left corner of the first digit/sign (0-239)
y: y-coordinate of the upper, left corner of the first digit/sign (0-319)

Usage: myGLCD.print(num, 3, CENTER,0); // Print the value of “num” with 3 fractional digits top centered
Notes: Supported range depends on the number of fractional digits used.

Fractional
digits

Approx range

1 +/- 200000000
2 +/- 20000000
3 +/- 2000000
4 +/- 200000
5 +/- 20000

setFont(fontname);

Select font to use with print(), printNumI() and printNumF().
Added in v4.0

Parameters: fontname: Name of the array containing the font you wish to use
Usage: myGLCD.setFont(BigFont); // Select the font called BigFont
Notes: You must declare the font-array as an external or include it in your sketch.

drawBitmap (x, y, sx, sy, data[, scale]);

Draw a bitmap on the screen.
Added in v2.2

Parameters: x: x-coordinate of the upper, left corner of the bitmap
y: y-coordinate of the upper, left corner of the bitmap
sx: width of the bitmap in pixels
sy: height of the bitmap in pixels
data: array containing the bitmap-data
scale: <optional>
 Scaling factor. Each pixel in the bitmap will be drawn as <scale>x<scale> pixels on screen.

Usage: myGLCD.drawBitmap(0, 0, 32, 32, bitmap); // Draw a 32x32 pixel bitmap in the upper left corner
Notes: You can use the online-tool “ImageConverter 565” or “ImageConverter565.exe” in the Tools-folder to

convert pictures into compatible arrays. The online-tool can be found on my website.
Requires that you #include <avr/pgmspace.h>

drawBitmap (x, y, sx, sy, data, deg, rox, roy);

Draw a bitmap on the screen with rotation.
Added in v2.3

Parameters: x: x-coordinate of the upper, left corner of the bitmap
y: y-coordinate of the upper, left corner of the bitmap
sx: width of the bitmap in pixels
sy: height of the bitmap in pixels
data: array containing the bitmap-data
deg: Degrees to rotate bitmap (0-359)
rox: x-coordinate of the pixel to use as rotational center relative to bitmaps upper left corner
roy: y-coordinate of the pixel to use as rotational center relative to bitmaps upper left corner

Usage: myGLCD.drawBitmap(50, 50, 32, 32, bitmap, 45, 16, 16); // Draw a bitmap rotated 45 degrees around its
center

Notes: You can use the online-tool “ImageConverter 565” or “ImageConverter565.exe” in the Tools-folder to
convert pictures into compatible arrays. The online-tool can be found on my website.
Requires that you #include <avr/pgmspace.h>

