
ITDB02_Graph - Arduino library support for ITDB02 LCD Board
Copyright (C)2011 Henning Karlsen. All right reserved

Basic functionality of this library are based on the demo-code provided by ITead studio. You can
find the latest version of the library at http://www.henningkarlsen.com/electronics

This library has been made especially for the 2.4" TFT LCD Screen Modules: ITDB02-2.4 and ITDB02-
2.4D by ITead studio. This library has been designed to use 8bit mode, so it will not work with
the 3.2" Module.

If you make any modifications or improvements to the code, I would appreciate that you share the
code with me so that I might include it in the next release. I can be contacted through
http://www.henningkarlsen.com/electronics/contact.php

This library is free software; you can redistribute it and/or modify it under the terms of the
GNU Lesser General Public License as published by the Free Software Foundation; either version
2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this library;
if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
02110-1301 USA

Version: 1.0 Jul 10 2010 • initial release
 1.01 Aug 11 2010 • Fixed a small bug with the color green.

Thanks to Thomas finding and fixing the
bug.

 2.0 Aug 13 2010 • Added the possibility to use the display in
Landscape mode. Also added a larger font by
request.

 2.1 Sep 30 2010 • Added Arduino Mega compatibility
• Fixed a bug with CENTER and RIGHT in

LANDSCAPE mode
• Fixed a bug in printNumI and printNumF when

the number to be printed was 0
 2.2 Oct 14 2010 • Added drawBitmap() with its associated tool
 2.3 Nov 24 2010 • Added Arduino Mega2560 compatibility

• Added support for rotating text and
bitmaps.

 2.4 Jan 18 2011 • Fixed an error in the requirements
 2.5 Jan 30 2011 • Added loadBitmap()

• Optimized drawBitmap() when not using
rotation

 2.6 Mar 4 2011 • Fixed a bug in printNumF when the number to
be printed was (-)0.something

 3.0 Mar 19 2011 • General optimization
 3.01 Mar 20 2011 • Reduced memory footprint slightly
 4.0 Mar 27 2011 • Remade the font-system to make it more

flexible
 4.01 Apr 17 2011 • Added ITDB02-2.4D compatibility

• Further reduced memory footprint
 4.1 Apr 19 2011 • Remade the tinyFAT integration. Moved

loadBitmap() to the ITDB02_tinyFAT library

IMPORTANT:
If you are upgrading from a version below v4.0 you have to delete the old library before
unpacking v4.0+

INTEGRATION WITH tinyFAT:
tinyFAT integration has been moved to a separate library. Please use the ITDB02_tinyFAT library
to enable integration.

 Page 1 of 6

 Page 2 of 6

DISPLAY ORIENTATION:

Requirements:
The library require the following connections:

Signal ITDB02 pin Arduino pin* Arduino Mega pin
DB8 7 D0 D22
DB9 8 D1 D23
DB10 9 D2 D24
DB11 10 D3 D25
DB12 11 D4 D26
DB13 12 D5 D27
DB14 13 D6 D28
DB15 14 D7 D29

ITDB02 pinout

* All boards with pinout like the Arduino Duemilanove / Arduino UNO

Defined Literals:

Alignment

For use with print(), printNumI() and printNumF()

LEFT:
RIGHT:

CENTER:

 0
9999
9998

Orientation

For use with InitLCD()

PORTRAIT:
LANDSCAPE:

 0
1

Display Model

For use with ITDB02()

ITDB24:
ITDB24D:

 0
1

Included Fonts:

SmallFont

Charactersize:

Number of characters:
 8x12 pixels
95

BigFont

Charactersize:

Number of characters:
 16x16 pixels
95

SevenSegNumFont

Charactersize:

Number of characters:
 32x50 pixels
10

 Page 3 of 6

Functions:

ITDB02(RS, WR, CS, RST[, Model]);

The main class of the interface.
Changed in v4.01

Parameters: RS: Arduino pin for Register Select
WR: Arduino pin for Write
CS: Arduino pin for Chip Select
RST: Arduino pin for Reset
Model: <optional>
 ITDB24 (default)
 ITDB24D

Usage: ITDB02 myGLCD(19,18,17,16); // Start an instance of the ITDB02 class

InitLCD([orientation]);

Initialize the LCD and set display orientation.
Changed in v2.0

Parameters: Orientation: <optional>
 PORTRAIT (default)
 LANDSCAPE

Usage: myGLCD.initLCD(); // Initialize the display
Notes: This will reset color to white with black background. Font size will be reset to FONT_SMALL.

clrScr();

Clear the screen. The background-color will be set to black.

Parameters: None
Usage: myGLCD.clrScr(); // Clear the screen

fillScr(r, g, b);

Fill the screen with a specified color.

Parameters: r: Red component of an RGB value (0-255)

g: Green component of an RGB value (0-255)
b: Blue component of an RGB value (0-255)

Usage: myGLCD.fillScr(255,127,0); // Fill the screen with orange

setColor(r, g, b);

Set the color to use for all draw*, fill* and print commands.

Parameters: r: Red component of an RGB value (0-255)

g: Green component of an RGB value (0-255)
b: Blue component of an RGB value (0-255)

Usage: myGLCD.setColor(0,255,255); // Set the color to cyan

setBackColor(r, g, b);

Set the background color to use for all print commands.

Parameters: r: Red component of an RGB value (0-255)

g: Green component of an RGB value (0-255)
b: Blue component of an RGB value (0-255)

Usage: myGLCD.setBackColor(255,255,255); // Set the background color to white

drawPixel(x, y);

Draw a single pixel.

Parameters: x: x-coordinate of the pixel (0-239)

y: y-coordinate of the pixel (0-319)
Usage: myGLCD.drawPixel(119,159); // Draw a single pixel at the center of the screen

drawLine(x1, y1, x2, y2);

Draw a line between two points.

Parameters: x1: x-coordinate of the start-point (0-239)

y1: y-coordinate of the start-point (0-319)
x2: x-coordinate of the end-point (0-239)
y2: y-coordinate of the end-point (0-319)

Usage: myGLCD.drawLine(0,0,239,319); // Draw a line from the upper left to the lower right corner

 Page 4 of 6

drawRect(x1, y1, x2, y2);

Draw a rectangle between two points.

Parameters: x1: x-coordinate of the start-corner (0-239)

y1: y-coordinate of the start-corner (0-319)
x2: x-coordinate of the end-corner (0-239)
y2: y-coordinate of the end-corner (0-319)

Usage: myGLCD.drawRect(119,159,239,319); // Draw a rectangle in the lower right corner of the screen

drawRoundRect(x1, y1, x2, y2);

Draw a rectangle with slightly rounded corners between two points. The minimum size is 5 pixels in both directions. If a smaller size
is requested the rectangle will not be drawn.

Parameters: x1: x-coordinate of the start-corner (0-239)

y1: y-coordinate of the start-corner (0-319)
x2: x-coordinate of the end-corner (0-239)
y2: y-coordinate of the end-corner (0-319)

Usage: myGLCD.drawRoundRect(0,0,119,159); // Draw a rounded rectangle in the upper left corner of the screen

fillRect(x1, y1, x2, y2);

Draw a filled rectangle between two points.

Parameters: x1: x-coordinate of the start-corner (0-239)

y1: y-coordinate of the start-corner (0-319)
x2: x-coordinate of the end-corner (0-239)
y2: y-coordinate of the end-corner (0-319)

Usage: myGLCD.fillRect(119,0,239,159); // Draw a filled rectangle in the upper right corner of the screen

fillRoundRect(x1, y1, x2, y2);

Draw a filled rectangle with slightly rounded corners between two points. The minimum size is 5 pixels in both directions. If a
smaller size is requested the rectangle will not be drawn.

Parameters: x1: x-coordinate of the start-corner (0-239)

y1: y-coordinate of the start-corner (0-319)
x2: x-coordinate of the end-corner (0-239)
y2: y-coordinate of the end-corner (0-319)

Usage: myGLCD.fillRoundRect(0,159,119,319); // Draw a filled, rounded rectangle in the lower left corner of the
screen

drawCircle(x, y, radius);

Draw a circle with a specified radius.

Parameters: x: x-coordinate of the center of the circle (0-239)

y: y-coordinate of the center of the circle (0-319)
radius: radius of the circle in pixels

Usage: myGLCD.drawCircle(119,159,20); // Draw a circle in the middle of the screen with a radius of 20 pixels

fillCircle(x, y, radius);

Draw a filled circle with a specified radius.

Parameters: x: x-coordinate of the center of the circle (0-239)

y: y-coordinate of the center of the circle (0-319)
radius: radius of the circle in pixels

Usage: myGLCD.fillCircle(119,159,10); // Draw a filled circle in the middle of the screen with a radius of 10
pixels

print(st, x, y[, deg]);

Print a string at the specified coordinates. An optional background color can be specified. Default background is black.
You can use the literals LEFT, CENTER and RIGHT as the x-coordinate to align the string on the screen.

Changed in v2.3
Parameters: st: the string to print

x: x-coordinate of the upper, left corner of the first character (0-239)
y: y-coordinate of the upper, left corner of the first character (0-319)
deg: <optional>
 Degrees to rotate text (0-359). Text will be rotated around the upper left corner.

Usage: myGLCD.print(“Hello, World!”,CENTER,0); // Print “Hello, World!” centered at the top of the screen
Notes: CENTER and RIGHT will not calculate the coordinates correctly when rotating text.

 Page 5 of 6

 Page 6 of 6

printNumI(num, x, y);

Print an integer number at the specified coordinates. An optional background color can be specified. Default background is black.
You can use the literals LEFT, CENTER and RIGHT as the x-coordinate to align the string on the screen.

Parameters: num: the value to print (-2,147,483,648 to 2,147,483,647) INTEGERS ONLY

x: x-coordinate of the upper, left corner of the first digit/sign (0-239)
y: y-coordinate of the upper, left corner of the first digit/sign (0-319)

Usage: myGLCD.print(num,CENTER,0); // Print the value of “num” centered at the top of the screen

printNumF(num, dec, x, y);

Print a floating-point number at the specified coordinates. An optional background color can be specified. Default background is
black.
You can use the literals LEFT, CENTER and RIGHT as the x-coordinate to align the string on the screen.
WARNING: Floating point numbers are not exact, and may yield strange results when compared. Use at your own discretion.

Parameters: num: the value to print (See note)

dec: digits in the fractional part (1-5) 0 is not supported. Use printNumI() instead.
x: x-coordinate of the upper, left corner of the first digit/sign (0-239)
y: y-coordinate of the upper, left corner of the first digit/sign (0-319)

Usage: myGLCD.print(num, 3, CENTER,0); // Print the value of “num” with 3 fractional digits top centered
Notes: Supported range depends on the number of fractional digits used.

Fractional
digits

Approx range

1 +/- 200000000
2 +/- 20000000
3 +/- 2000000
4 +/- 200000
5 +/- 20000

setFont(fontname);

Select font to use with print(), printNumI() and printNumF().
Added in v4.0

Parameters: fontname: Name of the array containing the font you wish to use
Usage: myGLCD.setFont(BigFont); // Select the font called BigFont
Notes: You must declare the font-array as an external or include it in your sketch.

drawBitmap (x, y, sx, sy, data[, scale]);

Draw a bitmap on the screen.
Added in v2.2

Parameters: x: x-coordinate of the upper, left corner of the bitmap
y: y-coordinate of the upper, left corner of the bitmap
sx: width of the bitmap in pixels
sy: height of the bitmap in pixels
data: array containing the bitmap-data
scale: <optional>
 Scaling factor. Each pixel in the bitmap will be drawn as <scale>x<scale> pixels on screen.

Usage: myGLCD.drawBitmap(0, 0, 32, 32, bitmap); // Draw a 32x32 pixel bitmap in the upper left corner
Notes: You can use the online-tool “ImageConverter 565” or “ImageConverter565.exe” in the Tools-folder to

convert pictures into compatible arrays. The online-tool can be found on my website.
Requires that you #include <avr/pgmspace.h>

drawBitmap (x, y, sx, sy, data, deg, rox, roy);

Draw a bitmap on the screen with rotation.
Added in v2.3

Parameters: x: x-coordinate of the upper, left corner of the bitmap
y: y-coordinate of the upper, left corner of the bitmap
sx: width of the bitmap in pixels
sy: height of the bitmap in pixels
data: array containing the bitmap-data
deg: Degrees to rotate bitmap (0-359)
rox: x-coordinate of the pixel to use as rotational center relative to bitmaps upper left corner
roy: y-coordinate of the pixel to use as rotational center relative to bitmaps upper left corner

Usage: myGLCD.drawBitmap(50, 50, 32, 32, bitmap, 45, 16, 16); // Draw a bitmap rotated 45 degrees around its
center

Notes: You can use the online-tool “ImageConverter 565” or “ImageConverter565.exe” in the Tools-folder to
convert pictures into compatible arrays. The online-tool can be found on my website.
Requires that you #include <avr/pgmspace.h>

